Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

نویسندگان

  • Hiroki Toyoda
  • Ming-Gao Zhao
  • Min Zhuo
چکیده

The anterior cingulate cortex (ACC) is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs) in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain.

The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in learning and memory. Recent studies show that painful stimuli activate the prefrontal cortex and that brain chemistry is altered in this area in patients with chronic pain. Components of the CNS that are involved in pain transmission and modulation, from the spinal cord to the ACC, are very plastic and undergo r...

متن کامل

Long-term potentiation in the anterior cingulate cortex and chronic pain

Glutamate is the primary excitatory transmitter of sensory transmission and perception in the central nervous system. Painful or noxious stimuli from the periphery 'teach' humans and animals to avoid potentially dangerous objects or environments, whereas tissue injury itself causes unnecessary chronic pain that can even last for long periods of time. Conventional pain medicines often fail to co...

متن کامل

No requirement of interlukine-1 for long-term potentiation in the anterior cingulate cortex of adult mice

Background The enhanced expression of cytokines in the pathological states suggests that they have important roles in the initiation or maintenance of disease states. FINDINGS To determine the involvement of cytokines in chronic neuropathic pain, the expression of cytokines in the anterior cingulate cortex neurons in the ligation of the common peroneal nerve mice was investigated. We utilized...

متن کامل

Activations of muscarinic M1 receptors in the anterior cingulate cortex contribute to the antinociceptive effect via GABAergic transmission

Background Cholinergic systems regulate the synaptic transmission resulting in the contribution of the nociceptive behaviors. Anterior cingulate cortex is a key cortical area to play roles in nociception and chronic pain. However, the effect of the activation of cholinergic system for nociception is still unknown in the cortical area. Here, we tested whether the activation of cholinergic recept...

متن کامل

TNF-alpha involves in altered prefrontal synaptic transmission in mice with persistent inflammatory pain.

Tumor necrosis factor alpha (TNF-alpha) is implicated in the development of persistent pain. Its expression increases both spinally and supraspinally after peripheral inflammation. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Prefrontal synaptic transmission is potentiated in mice with chronic pain through an enhancement o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular Pain

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009